ON AN OPTIMAL CONTROL PROBLEM

(OB ODNOI ZADACHE OPTIMAL'NOGO REGULIROVANIIA)

PMM Vol. 26, No. 1, 1962, pp. 181-184

L.S. GNOENSKII (Moscow)

(Received July 7, 1961)

1. The following problem is encountered in the design of control systems. A system is described by the equations

$$k_{j} + \sum_{k=1}^{n} a_{jk}(t) x_{k} = b_{i}u(t) \qquad (j = 1, ..., n)$$
(1)
$$|u(t)| \leq m \qquad (2)$$

The solution x (x_1, x_2, \ldots, x_n) satisfies the initial conditions $x = x_0$ (x_{10}, \ldots, x_{n0}) at t = 0. A set N_k is given such that if x $(x_1, \ldots, x_n) \in N_k$, then

$$x_1 = a_1, \qquad x_2 = a_2, \ldots, \qquad x_k = a_k$$

Here a_1, \ldots, a_k are constants. We shall assume that there exists a set V of control functions u(t) satisfying (2) such that $u(t) \in V$, then the solution of the system (1) passes from the point x_0 into the set N_k . It is required to find in the set V a function $u_{\min}(t)$ which takes the solution from the point x_0 into the set N_k in the shortest time. This problem has been considered in [1-5] and other articles, and the most general results have been obtained for it.

In this article we shall discuss a somewhat different method for finding $u_{\min}(t)$ for the case k = 2, which, while a special case, is fairly important for applications. The method is based on a generalization of the method of accumulated perturbations.

The proposed method closely resembles a method mentioned in [3]. It has, however, certain particular features which appear likely to be useful in some applications.

As is known, a solution of the system (1) may be represented in the form

$$\mathbf{x}_{j}(t) = \mathbf{x}_{j0}(t) + \int_{0}^{1} K_{j}(t, \tau) u(\tau) d\tau, \quad (j = 1, ..., n), \quad \mathbf{x}_{j0}(0) = \mathbf{x}_{j0} \quad (3)$$

Let A_i be a set of points t belonging to the positive half-axis such that on A_i we have

$$m \int_{0}^{t} |K_{i}(t, \tau)| d\tau \ge |a_{i} - x_{i0}(t)| \equiv |n_{i}(t)| \qquad (i = 1, 2)$$

We shall denote by A the intersection of the sets A_1 and A_2 . If A = 0, then we know that a transition from the point x_0 into the set N_2 is not feasible. Let us assume that $A \neq 0$, T is an arbitrary point of A, and $u_T(r)$ belongs to the set M of functions u(r) satisfying (2) and the relation

$$\int_{0}^{T} K_{1}(T, \tau) u(\tau) d\tau = n_{1}(T)$$
(4)

For $u_T(r)$ we have

 $\ln \left| n_{2}(T) - \int_{0}^{T} K_{2}(T, \tau) u(\tau) d\tau \right| \qquad (u \in M)$ (5)

If the equation for T

$$n_{\mathbf{s}}(T) - \int_{0}^{T} K_{\mathbf{s}}(T, \tau) u_{T}(\tau) d\tau = 0$$
 (6)

has a solution, then a transition from the point x_0 into N_2 is feasible and the optimal transition with respect to speed is carried out by the function

$$u_{\min}(\tau) = u_{T_{\star}}(\tau)$$

Here T_0 is the smallest root of Equation (6).

In Formulas (4) to (6) we may interchange the indices 1 and 2, but this will not change the value of T_0 . It should be noted that it is sometimes sufficient to have the coordinate x_2 lie not at a_2 but in some ϵ neighborhood of a_2 . In the present method the value of (5) is determined. As soon as it is found for some $T < T_0$ that (5) is less than ϵ , we obtain a function $u_T(\tau)$ which carries out the transition from the point x_0 to the point whose first coordinate is equal to a_1 and whose second coordinate lies in an ϵ -neighborhood of a_2 .

2. Let us construct the function $u_T(\tau)$. We set

$$K_{1}(T, \tau) = K_{1}(\tau), \qquad K_{2}(T, \tau) = K_{1}(\tau), \qquad K(\tau) = \frac{K_{1}(\tau)}{K_{1}(\tau)}$$
$$A^{+} = \sup_{\tau} K(\tau), \qquad A^{-} = \inf_{\tau} K(\tau), \qquad \tau \in [0, T]$$
$$I_{ij}(x, y) = m \int_{\sigma(x, y)} K_{i}(\tau) \operatorname{sign} K_{j}(\tau) d\tau$$

254

where $\sigma(x, y)$ is a set belonging to [0, T] such that if, $r \in \sigma(x, y)$, then y > K(r) > x. It is assumed that none of the functions $K_1(r)$, $K_2(r)$, K(r) can be constant on sets of nonzero measure. These restrictions do not cause any difficulty.

The
$$A^-$$
 and A^+ and A^- may be infinite. Since $T \in A$, we have
 $I_{11}(A^-, A^+) = m \int_0^T K_1(\tau) \operatorname{sign} K_1(\tau) d\tau = n_1(T) + \alpha_{11}(T), \quad \alpha_{11}(T) > 0$

We shall denote by $u^+(r)$ and $u^-(r)$, respectively, the functions for which

$$n^{+} = \sup_{u} \int_{0}^{T} K_{2}(\tau) u(\tau) d\tau, \qquad n^{-} = \inf_{v} \int_{0}^{T} K_{2}(\tau) u(\tau) d\tau, \qquad u \in M$$

The value $n_{2}(T)$ belongs to one of the intervals

$$(-\infty, n^{-}), [n^{-}, n^{+}], (n^{+}, \infty)$$

Obviously, if $n_2(T) \in (-\infty, n^-)$, then the function $u_T(r)$ for which we have (5) coincides with $u^-(r)$; if $n_2(T) \in (n^+, \infty)$, then $u_T(r)$ coincides with $u^+(r)$. It will be shown below that if $n_2(T) \in [n^-, n^-]$, then there exists a function $u_n(r)$ in the set N satisfying the equation

$$\int_{0}^{T} K_{2}(\tau) u_{a}(\tau) d\tau = n_{2}(T)$$

that is, $u_{\sigma}(r)$ coincides with $u_{T}(r)$.

We shall prove that

$$u^{+}(\tau) = m \operatorname{sign} K_{1}(\tau) \quad \text{if } \tau \in \sigma(y_{0}, A^{+})$$

$$u^{+}(\tau) = -m \operatorname{sign} K_{1}(\tau) \quad \text{if } \tau \in \sigma(A^{-}, y_{0})$$

where y_0 satisfies the equation

$$I_{11}(A^{-}, y) = \frac{a_{11}}{2}$$

$$u^{-}(\tau) = -m \operatorname{sign} K_{1}(\tau) \quad \text{if } \tau \in \sigma(y_{1}, A^{+})$$

$$u^{-}(\tau) = m \operatorname{sign} K_{1}(\tau) \quad \text{if } \tau \in \sigma(A^{-}, y_{1})$$
(7)

where y₁ satisfies the equation

$$I_{11}(y, A^{+}) = \frac{\alpha_{11}}{2}$$
 (8)

It should be noted that for any y in $[A^-, A^+]$ the relation $\sigma(A^-, y) \cup \sigma(y, A^+) = [0, T]$

is satisfied.

Taking into consideration the above mentioned properties of the functions $K_1(r)$ and K(r), we find that $I_{11}(A^-, y)$ and $I_{11}(y, A^+)$ are continuous and strictly monotonic functions of y. Since

$$I_{11}(A^-, A^-) = 0, \qquad I_{11}(A^+, A^+) = 0, \qquad I_{11}(A^-, A^+) = n_1(T) + \alpha_{11}(T)$$

each of the Equations (7) and (8) has a unique solution in (A^{-}, A^{+}) .

The functions $u^+(r)$ and $u^-(r)$ belong to M.

In fact:

$$\int_{0}^{T} K_{1}(\tau) u^{+}(\tau) d\tau = -I_{11}(A^{-}, y_{0}) + I_{11}(y_{0}, A^{+}) = I_{11}(A^{-}, y_{0}) + I_{11}(y_{0}, A^{+}) - 2I_{11}(A^{-}, y_{0}) = n_{1} + \alpha_{11} - \alpha_{11} = n_{1}$$

$$\int_{0}^{T} K_{1}(\tau) u^{-}(\tau) d\tau = I_{11}(A^{-}, y_{1}) - I_{11}(y_{1}, A^{+}) = n_{1}$$
(9)

Let u(r) be an arbitrary function belonging to M. On the set $\sigma(\overline{A}, y_0)$ the function $K_1(r)$ $(u^+(r) - u(r))$ is non-positive, and on the set $\sigma(y_0, A^+)$ it is non-negative.

Furthermore,

$$\int_{\sigma(A^-, v_0)} K_1(u^+ - u) d\tau = - \int_{\sigma(v_0, A^+)} K_1(u^+ - u) d\tau$$

Therefore, applying the mean value theorem, we obtain

$$\int_{0}^{T} K_{2}u^{+}d\tau - \int_{0}^{T} K_{2}ud\tau = \int_{\sigma(A^{-}, y_{0})} KK_{1}(u^{+}-u) d\tau + \int_{\sigma(y_{0}, A^{+})} KK_{1}(u^{+}-u) d\tau =$$

$$= K(\tau^{*}) \int_{\sigma(A^{-}, y_{0})} K_{1}(u^{+}-u) d\tau + K(\tau^{**}) \int_{\sigma(y_{0}, A^{+})} K_{1}(u^{+}-u) d\tau =$$

$$= (K(\tau^{**}) - K(\tau^{*})) \int_{\sigma(y_{0}, A^{+})} K_{1}(u^{+}-u) d\tau \ge 0$$

since $K(r^{**}) > K(r^{*})$.

In a similar manner it can be proved that u(r) has the form given above.

Let $n_2(T) \in [n^-, n^+]$. We shall designate by $z = \psi(y)$ a function defined by the relation

$$\varphi(y, z) \equiv I_{11}(A^{-}, z) - I_{11}(z, y) + I_{11}(y, A^{+}) = n_1$$
(10)

It follows from (9) that $z = A^{-}$ if $y = y_0$ and $z = y_1$ if $y = A^{+}$. The

256

function $\phi(y, z)$ is defined and continuous in the region $A^- < y < A^+$, $A^- < z < y$. For any y in $[y_0, A^+]$ the function $\phi(y, z)$ is monotonically increasing in the sense from the value

$$-I_{11}(A^{-}, y) + I_{11}(y, A^{+}) < n_1$$

to the value

$$I_{11}(A^{-}, y) + I_{11}(y, A^{+}) = n_1 + \alpha_{11}$$

as z varies from A to y.

For any z in $[A^-, A^+]$, the function $\phi(y, z)$ is monotonically decreasing in the strict sense as y varies from z to A^+ .

It can be proved therefore that $z = \psi(y)$, is defined, continuous, and monotonically increasing in the strict sense from $z = A^-$ to $z = y_1$ as y varies from y_0 to A^+ . It should also be remarked that $\psi(y) < y$ for $y \in [y_0, A^+]$.

In fact, $\psi(y_0) = A^- < y_0$, and if, as y increases, the equality $x^* = \psi(y^*) = y^*$ is satisfied for some y^* , then

$$\varphi(y^*, z^*) = \varphi(y^*, y^*) = n_1 + \alpha_{11}$$

which contradicts the definition $z = \psi(y)$. We now introduce the function

$$\Phi(y) = \int_{0}^{T} K_{2}(\tau) u_{y}(\tau) d\tau$$

where

$$u_{y}(\tau) = m \operatorname{sign} K_{1}(\tau) \quad \text{if } \tau \in \sigma (A^{-}, \psi(y)) \cup \sigma(y, A^{+})$$
$$u_{y}(\tau) = -m \operatorname{sign} K_{1}(\tau) \quad \text{if } \tau \in \sigma(\psi(y), y)$$

it follows from (10) that for any $y \in [y_0, A^+]$ the function $u_y(r)$ belongs to the set N.

The function $\Phi(y)$ is defined and continuous in the interval $[y_0, A^+]$ and varies from the value n^- to the value n^+ as y increases from y_0 to A^+ ; consequently, the equation

$$\Phi(y) = n_2(T) \tag{11}$$

has at least one root y = a in the interval $[y_0, A^+]$, and therefore $\int_0^T K_2(\tau) \ u_a(\tau) \ d\tau = n_2(T)$

```
that is, u_{\sigma}(r) coincides with u_{T}(r).
```

BIBLIOGRAPHY

- Fel'dbaum, A.A., Optimal'nye protsessy v sistemakh avtomaticheskogo regulirovaniia (Optimal processes in automatic control systems). Avtomatika i telemekhanika Vol. 14, No. 6, 1953.
- Bellman, R., Glicksberg, I. and Gross, O., On the "bang-bang" control problem. Quarterly Applied Mathematics Vol. 14, No. 1, 1956.
- Krasovskii, N.N., K teorii optimal'nogo regulirovaniia (A contribution to the theory of optimal control). Automatika i telemekhanika Vol. 18, No. 11, 1957.
- Voltianskii, V.G., Gamkrelidze, R.V. and Pontriagin, L.S., Teoriia optimal'nykh protsessov. 1. Printsip maksimuma (Theory of Optimal Processes. 1. The Maximum Principle). *Izv. Akad. nauk SSSR* Vol.24, No. 1, 1960.
- Rozonoer, L.I., Printsip maksimuma v teorii optimal'nykh sistem (The maximum principle in the theory of optimal systems). Avtomatika i telemekhanika Vol. 20, No. 11, 1959.

Translated by A.S.