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1. The following problem is encountered -in the design of control 
systems. A system is dycribed by the equations 

*j + x =jk tf) xk = bfu (‘1 (j=i,...,n) (1) 
k=l 

I u (4 I < m (2) 

The solution x (xl, x3, . . ., x,,) satisfies the inltfal conditions 
x= x e (%I(). . . . . ~a,,) at t = 0. A set Nk is given such that If s (xl. 
. . . , ~a) E Nk, then 

q= al, 2, = aa, . . . , zk = al 

Here al, . . . . a& are constants. We shall assume that there exists a 
set V of control functions n(t) satisfying (2) such that a(t) E V, then 
the solution of the system (1) passes from the point r,, Into the set Nk. 
It is required to find In the set V a function smia( t) which takes the 
solution from the point L,, into the set Nh In the shortest time. This 
problem has been considered In Cl-51 and other articles, and the most 
general results have been obtained for it. 

In this article we shall discuss a somewhat different method for 
f Inding “sin (t) for the case k = 2; which, rhile a special case, is 
fairly important for applications. The method Is based on a generaliza- 
tion of the method of accumulated perturbations. 

The proposed method closely resembles a method mentioned in [31. It 
has, however, certain particular features which appear likely to be use- 
ful in some applications. 

As is known, a solution of the system (1) may be represented In the 
form 

~j (I) = sje (t) + 1 Kj (tv r) a (r) dr, (i=i,...,n), zjO(") = zjO (3) 
0 
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Let Ai be a Set Of points t belonging to t&e pOSitiY8 half-axis such 
that 011 Ai re hare 

f 

m IQ& ~)l~~),l~~-~io(~)I~ln~(~) I s (i = 1, 2) 
0 

‘le Shall denote by A the intersection of the sets Al aad A,. If A = 0, 
then we kaow thst a transition from the point x8 into the set N2 is not 
feasible. Let us assume that A 6x0, T is aa arbitrary point of A, and 
afir) belongs to the set M of functions a(r) satislring (2) and the re- 
latlon 

T 

s 
KI (T, r) u (z) dr = I(I (2’) (4) 

0 

For UT(T) we have 

(5) 

If the equation for T 
T 

haa a solution, then a transition from the point go into N, is feasible 
sad the optimal transition rith respect to speed is carried out br the 
function 

Umia (rc) = ur, (*I 

Rem T, is the smallest root of Equation (6). 

In Formulas (4) to (6) we mar interchange the iadiees 1 aad 2, but 
this nil1 not change the value of TO. It ahoa1.d be noted that it ie so=%- 
times sufficient to have the coordinate x2 lie not at a2 but in some 6 - 
neighborhood of a2. In the present Method the value of (5) is determined. 
As soon ILS it is found for some T < To that (5) Is less than E, we ob- 

tain a function u#) which carries out the traasition from the point x0 
to the point whose first coordinate is equal to aI and whose second oo- 
ordinate lies in an r+eighborhood of a2. 

2. Let us construct the function a#). We set 

A+ = Sup K(x), A- ZL: Inf K(T), WE IO, Tl + + 

Zij Cr. Y) = m s 
KS (z) s&n Kj (I’) & 

ew) 
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where CI(X, y) is a set belonging to [O, ?I such that if, f f of%, y), 
then y > f(r) 2 x. It is assumed that aone of the functions KI(f 1, $(r 1, 
K(r) can be constant ou sets of nomero measure. These restrictions do 
not cause any difficulty. 

The A- aad A+ and A” may be infinite. Since T E.A, re have 
T 

We shsll denote by II’ (r ) and u-0 ) , respectively, the functions for 

which 
T T 

n+ = sup 
s 

KS (r) u (r) dr, n- = inf S Hz (r) u (r) dr, WEM 
uO 0 

The value n2(ZJ belongs to oae of the intervals 

( -00, n-j, [n-, nf], (n+, 00) 

Obvtoasly, if n*(F) E ( -= , n-1. then the function afir) for which we 

have (5) coincides with a-(r); if n2(l) E (n+, 4, then a (t) coincides 
with rr+(r ). It will be shown below that if n2(T) E [n’, n 5 , then there 
exists a fuaction a,(r) in the set il satisfying the eauation 

T 

s 
4 (r) ua (r) dz = np @‘I 

0 

that is, a,(r) coincides with uT(r). 

We shall prove that 
u+ (r) = m sign Kl (r) if r~ 6 (yo, A*) 

u+ (r) = - nr sign & (7) if re 6 (A”, Yo) 

where yo satisfies the eqaation 

r, (A-, y) = y 

lb-(t) = --msign 4(r) if r~a(yl, A+) 

a- (+) = m sign K, (r) if E a (Ai y1) 

where y, satisfies the equation 
1, {y, Af) = y 

It should be noted that for any y in IA’, A+] the relation 

o (A-, Y) U e (Y* A+) = to* Tl 

(7) 

(8) 

is satisfied. 
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Taking into consideration the above mentioned properties of the func- 
tions El(r) and X(r), ue find that f,,(A-, y) and l,,(y, A+) are con- 
tinuous aud strictly moaotonic tunctions or y. Since 

I,., IA-, A-) = 0, 111 (A+, A+) = 0, zIl(A-. A+) = Q(T) fall(T) 

each of the Equations (7) and (8) has 8 unique solution in (A-, A+). 

The functions u+(f) and u-(r) belong to M. 

In fact: 
T 

s 
lu, (7) a+ (r) dv = - Ill (A-, Yo) + Ill (Yo, A+) = Ill (A-, Yo) + 

0 
-I- 1x1 (Yo, ~+)-2fu (A; Yo) = 4+a1~-aan = nl 

T 

s 
K1(*)u-(7)d7 = Zn(A-, Yl) - Ill(Yl, A+) = n1 (9) 

0 

Let u(r) be au arbitrary fuuctiou belonging to L On the set o(A-, yc) 
the function K, (I ) (s+(f ) -: u(t)) is non-positive, and on the set 

a(yo, A+) it is non-negative. 

Furthermore, 

f 
K~(u+-u)dr=- 

5 KI (u+ --u)dT 
@A-.wf *&,A*) 

Therefore, amlying the mew value theorem, we obtain 

= (K(r*")--WI) $ 4(u+-u)&>o 

o(v.,A+) 
since lV(r**) > K(r*). 

In a similar manner it can be proved that u-(r) has the form given 

above. 

Let nZ(T) E th, n+ I. We shall deslguate by z = g(y) a function de- 

fined bx the relation 

cp (Y. 4 = fll (A-, 4--u (2. Y) + fll(?/, A+) = Rl WI 

It idlows frou (9) that z = A- if y = Y,, and z = yl if Y = A*. The 
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function q%y, Z) is defined and continuous In the region A’ < y 4 A+. 
A-<zdy. Forany yin [yO, A+3 the rmOti0n &y, z) IS monotonioally 
increasing in the sense from the value 

to the value 

- Ill t-4-e Y) + 111 (Y. A+) < Jh 

IIIW,Y)+IU(Y, A+)=nl+au 

as z varies from A-to y. 

For w z in [A-, A+], the runction C&Y, Z) is monotonically decreas- 

ing in the strict sense as y varies from z to A’. 

It can be proved therefore that z =-$(y, is defined, continuous, and 
monotonically increasing in the strict sense from z =.A- to z =‘yl ad y 

varies from y,, to A+. 

yE [yO, A+]; 

It shoaled also be remarked that $(y) < y for 

In ract, t,b(yO) =. A- < y,,, and If, as y increases, the eqaallty Z* =. 

e(f) = p is sat isried for some p, then 

cp (Y*. z’) =q(y+, Y+)=ul+w 

which contradicts the definition z =.@y). 'le now lntrodace the function 

where 

It follows rrom (10) that ror aru y E [y,,, A+] the function ny(r) belonga 
to the set Y. 

The runction @( y) is defined and conttnoous in the interval [yO, AtI 

and varies from the value n- to ‘the value a+ as J Increases troll y0 to 
A+; conseuaently. the equation 

@(Y)=s¶(q Vi) 

has at least one root y = a In the interval [ye, AtI, and therefore 
T 

s 
KS (r) u,, (r) d7 = nl (T) 

0 
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that is, u,(r) coincides with u,.(r). 
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