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1. The following problem is encountered in the design of control
systems. A system is dgscribed by the equations

ky+ 'glajk(t)xk=b‘u ) G=1...,n) ()
le@I<<m @)

The solution x (%), Zg «oes xn) satisfies the initial conditioms
= x5 (%4, .-+, xp9) 8t t =0, A set Nk is given such that if x (z;.
.. ) € Ny, then

T = a, Tg=4as, ..., Ty = Gy

Here a,, ..., ) are constants. We shall assume that there exists a
set V of control functions u(t) satisfying (2) such that u(t) & V, then
the solution of the system (1) passes from the point 2 into the set Nk'
It is required to find in the set V a function u_i-(t) which takes the
solution from the point z, into the set ”h in the shortest time. This
problem has been considered in [1-5] and other articles, and the most
general results have been obtained for it.

In this article we shall discuss a somewhat different method for
finding u_in(t) for the case k = 2, which, while a special case, is
fairly important for applications. The method is based on a generaliza-
tion of the method of accumulated perturbationms.

The proposed method closely resembles a method mentiomed in [3]. It
has, however, certain particular features which appear likely to be use
ful in some applications.

As is known, a solution of the system (1) may be represeanted in the

form
s; (=2, + S K; (¢, t)u(r)dr, G=1....,nm), 250 (0) =z, 3
0
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Let Ai be a set of points t belonging to the positive half-axis such
that on Ai we have
¢

'"§|Kc("')ld“>la¢“$¢o(t)|5|n‘(t)| (i=1,2)

We shall denote by A the intersection of the sets 4; and Az. It A= 0,
then we know that a transition from the point % into the set Né is not
feasible. Let us assume that A £ 0, T is an arbitrary point of 4, and
aq{(r) belongs to the set N of functions u(r) satisfying (2) and the re-
lation

T
S Ky (T, ¥)u (v) dv = ny (T} )
0
For ur(r) we have
T
Int | na (1) — § Ka(T, Pu@dr =) 6
1]
If the equation for T
T
m () — { Ka (T, )up (1) dv =0 (6)
0

has & solution, then a transition from the point 2 into N& is feasible
and the optimal transition with respect to speed 1s carried out by the
function

Bpin (¥) = ur, (v)

Rere ‘I‘o is the smallest root of Egquation (6).

In Formulas (4) to (8) we may interchange the indices 1 and 2, but
this will not change the value of T . It should be noted that it is some-
times sufficient to have the coordinate %9 11e not at a, but in some ¢-
neighborhood of ay. In the present method the value of (5) is determined.
As soon as it is found for some T < Ib that (5) is less than ¢, we ob-
tain a function n,(r) which carries out the transition from the point x,
to the point whose first coordinate is equal to s, and whose second co-
ordinate lies in an ¢ ~-neighborhood of a,.

2. Let us construct the function a1 ). We set
T
KT, v)y=K;(x), K (T, v)= K s (1), Kz )‘K:gr;
At = Sup X (%), A" == Inf K (1), =[0, T}
< <

Iz, 9)=m S K, (v) sign K; () dx
a(x,y)
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where o(x, y) is a set belonging to {o, 7] such that if, rco(x, ¥,
then y > K(r) > x. It is assumed that none of the functions Kl(r), Kz(r),
K(r) can be constant on sets of nonzero measure. These restrictions do
not cause any difficulty.

The 4~ apd A and A~ may be infinite. Since T €4, we have

In(47, AY) =m\ K; (v) sign K1 (v) dv = ni (T) +au(T), an(T)>0

13(/2).&

We shall depnote by u (r) and u (r), respectively, the functions for
which
T
K@ u(r)dr, n-= im’.g KE@u(t)dr, uweM
1]

D Y Y

nt == sup
w

The value nz(T) belongs to one of the intervals
(— o0, n7), [n~, nt], (n*, o0)

Obviously, if 32(1‘) < (-m n }, then the tunction n.r(r) for which we
have (5) coincides with u (r); if R (D E (n , ), then un(r) coincides
with s*(r). It will be shown below that if ny(D & [a”, n'], then there

exists a function u J7) in the set N satisfying the equation
T

S Ka (x) u, () dv = ng (T)

0

that is, ud(r) coincides with uT(r).

We shall prove that
ut(t)=msign K1(t) if vE0 (¥, 4%)
w(t)=—msignKi(v) ¢ v€6(4", w)

where y, satisfies the equation

- o
In(4", y) =~

™
v {t)=-—msign K1(v) it TEo(y, 44
uw(t)=msign Ki(v) if v€o(4", y)
where y, satisfies the equation a
In(y, 4% =2 ®)

It should be noted that for amy y im [A~, A*] the relation
s{47, ) Usy, 4H)=[0, T]

is satisfied.
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Taking into consideration the above mentioned properties of the func-
tions K)(r) and K(r), we find that I,,(4", y) and I,,(y, 4*) are con-
tinuous and strictly monotonic functions of y. Since

In(A=, A)=0, Iy (A* A%) =0, In (A7, A%) = ny (T) + an(T)

+

each of the Equations (7) and (8) has a unique solution in (4 , 47).

The functions u'(r) and u (r) belong to M.

In fact:

r
S Ky (%) u* (¥) dv = — I'y (A7, o) + I (Yo, A% = In (47, yo) +
2]

+ I (o, AY) 21 (A7, wo) =yt o — oy = ny

T
S KEi(Yu (tdr=In(4", ) —Iu(y, AY)y=n, 9)
H

Let u(r) be an arbitrary function belonging to M. On the set ar(A . yg)
the function K (r) (n {r) --u(r)) is non-positive, and on the set
(g, A*) it 1s non-negative.

Purtherwmore,

Ky (4% —u) dv = — S Ky (u* —u) dv
o{A™,v) o{yy. AY)

Therefore, applying the mean value theorem, we obtain

T T

S Keutdr— S Kaudt = S KK, (u*—u)dt + S KE; (u* — u) dr =
L' o oA, ) oV, AF)

=K (%) S Ky (u*— u) dv + K (7%%) S Ky (ut —u)dt =
o(A™1) o(v. A1)
= (K (t**) — K (%)) S Ky (ut —u) de>0
o{Y, A+)
since K(r**) > K(r*).

In 8 similar manper it can be proved that u (r) has the form given
above.

Let n, (T € [, n" ]. We shall designate by :z = t(y) a function de-
fined by the relation

q)(y, Z)EII; (A—, Z)—Iu (Z, y’)+.{u (y, A+)=n1 (10)

It follows from (9) that z= A if y= y, and z= y, if y= A*. The
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function ¢(y, z) is defined and continuous in the region A < y< A*.
A <z<y. For any y in [yo, A*] the function ¢(y, ) is monotonically
increasing in the sense from the value

—InA°, 9+ Iny AH<m
to the value

In(A47, 9)+In(y, A)=m+an
as z varies from 4 to y.

For any z in [A_, A*], the function ¢(y, ) is monotonically decreas-
ing in the strict sense as y varies from :z to At

It can be proved therefore that : = i/(y, is defined, continuous, and
monotonically increasing in the strict sense from z =4 to z = yL 88y
varies from y, to A*. It should also be remarked that P(y) < y for
y€ [y, 4'):

In fact, l/l(yo) =4 < ¥y, and if, as y increases, the equality :* =
Y(y*) = y* is satisfied for some y*, then

e ) =0@¥* ¥Y)=n+an

which contradicts the definition z = Y/(y). We mow introduce the functionm

T
O = S Ks (V) uy, (v)dr
where °
uy(t)=msaign K; (1) 1f vEo(4A7, v @) Us(y, 4%)
u, (t)=—msign K1 (v) it TEs(P(y), v}

it follows from (10) that for any y &< [yo, A] the function u (r) belongs
to the set M.

The function ®(y) is denned and continuous in the interval [’o' ]
and varies from the value n to the value n' as y increases from y, to
A+. consequently, the equation

D (y) = (T) ¢T))
has at least one root y = a in the interval [yo, A+]. and therefore
T

S K (1) u, (v) dT = ng (T}
0
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that is, "a(') coincides with u1(r).
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