ON AN OPTIMAL CONTROL PROBLEM

(OB ODNOI ZADACHE OPTIMAL' NOGO REGULIROVANIIA)

PMM Vol.26, No.1, 1962, pp. 181-184
L.S. GHOENSKII
(Moscom)

$$
\text { (Received July 7, } 1961 \text {) }
$$

1. The following problem is enconntered in the design of control systems. A system is described by the equations

$$
\begin{gather*}
x_{j}+\sum_{k=1}^{n} a_{j k}(t) x_{k}=b_{i} u(t) \quad(j=1, \ldots, n) \tag{1}\\
|u(t)| \leqslant m \tag{2}
\end{gather*}
$$

The solution $x\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ satisfies the initial conditions $x=x_{0}\left(x_{10}, \ldots, x_{n 0}\right)$ at $t=0$. A set N_{k} is given such that if $x\left(x_{1}\right.$, $\left.\ldots, x_{n}\right) \in N_{k}$, then

$$
x_{1}=a_{1}, \quad x_{2}=a_{2}, \ldots, \quad x_{k}=a_{k}
$$

Here a_{1}, \ldots, a_{k} are constants. We shall assume that there exists a set V of control functions $n(t)$ satisfying (2) such that $u(t) \in V$, then the solution of the systen (1) passes fron the point x_{0} into the set N_{k}. It is required to find in the set V a function $\varepsilon_{\text {mia }}(t)$ which takes the solution from the point x_{0} into the set N_{k} in the shortest time. This problem has been considered in [1-5] and other articles, and the most general results have been obtained for it.

In this article we shall discuss somewhat different wethod for finding $u_{\text {min }}(t)$ for the case $k=2$, which, while a special case, is fairly important for applications. The method is based on a generalization of the method of accurulated perturbations.

The proposed method closely resembles a method mentioned in [3]. It has, however, certain particular features which appear likely to be useful in some applications.

As is known, a solution of the systen (1) may be represented in the form

$$
\begin{equation*}
\sigma_{j}(\ell)=x_{j 0}(t)+\int_{0} K_{j}(t, \tau) u(\tau) d \tau, \quad(j=1, \ldots, n), \quad x_{j 0}(0)=x_{j 0} \tag{3}
\end{equation*}
$$

Let A_{i} be a set of points t belonging to the positive half-axis such that on A_{i} we have

$$
m \int_{0}^{i}\left|K_{i}(t, \tau)\right| d \tau \geqslant\left|a_{i}-x_{i 0}(t)\right| \equiv\left|n_{i}(t)\right| \quad(i=1,2)
$$

We shall denote by A the intersection of the sets A_{1} and A_{2}. If $A=0$, then we know that a transition frow the point x_{0} into the set N_{2} is not feasible. Let us assume that $A \neq 0, T$ is an arbitrary point of A, and $u_{T}(r)$ belongs to the set M of functions $u(r)$ satisfying (2) and the re1ation

$$
\begin{equation*}
\int_{0}^{T} K_{1}(T, \tau) u(\tau) d \tau=n_{1}(T) \tag{4}
\end{equation*}
$$

For $u_{T}(r)$ we have

$$
\begin{equation*}
\operatorname{Inf}\left|n_{2}(T)-\int_{0}^{T} K_{2}(T, \tau) u(\tau) d \tau\right| \quad(u \in M) \tag{5}
\end{equation*}
$$

If the equation for T

$$
\begin{equation*}
n_{2}(T)-\int_{0}^{T} K_{2}(T, \tau) u_{T}(\tau) d \tau=0 \tag{6}
\end{equation*}
$$

has a solution, then a transition from the point x_{0} into N_{2} is feasible and the optimal transition with respect to speed is carried out by the function

$$
u_{\min }(\tau)=u_{T_{0}}(\tau)
$$

Here T_{0} is the smallest root of Equation (6).
In Fornulas (4) to (6) we may interchanse the indices 1 and 2 , but this will not change the value of T_{0}. It shonld be noted that it is sometines sufficient to have the coordinate x_{2} lie not at a_{2} but in some neighborhood of a_{2}. In the present method the value of (5) is determined. As soon as it is found for some $T<T_{0}$ that (5) is less than ϵ, we obtain a fanction $u_{T}(r)$ wich carries out the transition from the point x_{0} to the point wose first coordinate is equal to a_{1} and whose second coordinate lies in an ϵ-neighborhood of \boldsymbol{c}_{2}.
2. Let us constrict the function $u_{T}(\tau)$. We set

$$
\begin{gathered}
K_{1}(T, \tau)=K_{1}(\tau), \quad K_{2}(T, \tau)=K_{\mathrm{g}}(\tau), \quad K(\tau)=\frac{K_{8}(\tau)}{K_{1}(\tau)} \\
A^{+}=\operatorname{Sup}_{\tau} K(\tau), \quad A^{-}=\operatorname{lnf} K(\tau), \quad \tau \in[0, T] \\
I_{i j}(x, y)=m \int_{\sigma(x, v)} K_{i}(\tau) \operatorname{sign} K_{j}(\tau) d \tau
\end{gathered}
$$

where $\sigma(x, y)$ is a set belonging to $[0, T]$ such that $i f, T \in \sigma(x, y)$, then $y>K(r) \geqslant x$. It is assumed that none of the functions $K_{1}(r), K_{2}(r)$, $K(r)$ can be constant on sets of nonzero measure. These restrictions do not cause any difficulty.

The A^{-}and A^{+}and A^{-}way be infinite. Since $T \in A$, we have

$$
I_{11}\left(A^{-}, A^{+}\right)=m \int_{0}^{T} K_{1}(\tau) \operatorname{sign} K_{1}(\tau) d \tau=n_{1}(T)+\alpha_{11}(T), \quad \alpha_{11}(T)>0
$$

We shall denote by $n^{+}(r)$ and $n^{-}(r)$, respectively, the functions for which

$$
n^{+}=\sup _{u} \int_{0}^{T} K_{2}(\tau) u(\tau) d \tau, \quad n^{-}=\inf \int_{0}^{T} K_{2}(\tau) u(\tau) d \tau, \quad u \in M
$$

The value $n_{2}(T)$ belongs to one of the intervals

$$
\left(-\infty, n^{-}\right),\left[n^{-}, n^{+}\right],\left(n^{+}, \infty\right)
$$

Obviously, if $n_{2}(T) \in\left(-\infty, n^{-}\right)$, then the function $u^{(}(r)$ for wich we have (5) coincides with $u^{-}(r)$; if $n_{2}(N) \in\left(n^{+}, \infty\right)$, then ${ }^{n} T^{(r)}$ coincides with $n^{+}(r)$. It will be shown below that if $n_{2}(T) \in\left[n^{-}, n^{+}\right]$, then there exists function $u_{a}(r)$ in the set satisfying the equation

$$
\int_{0}^{T} K_{3}(\tau) u_{a}(\tau) d \tau=n_{2}(T)
$$

that is, $u_{a}(r)$ coincides with $u_{T}(r)$.
We shall prove that

$$
\begin{array}{ll}
u^{+}(\tau)=m \operatorname{sign} K_{1}(\tau) & \text { if } \tau \in \sigma\left(y_{0}, A^{+}\right) \\
u^{+}(\tau)=-m \operatorname{sign} K_{1}(\tau) & \text { if } \tau \in \sigma\left(A^{-}, y_{0}\right)
\end{array}
$$

where y_{0} satisifes the equation

$$
\begin{gather*}
I_{11}\left(A^{-}, y\right)=\frac{\alpha_{11}}{2} \tag{7}\\
u^{-}(x)=-m \operatorname{sign} K_{1}(x) \quad \text { if } \tau \in \sigma\left(y_{1}, A^{+}\right) \\
u^{-}(x)=m \operatorname{sign} K_{1}(x) \quad \text { if } \tau \in \sigma\left(A^{-}, y_{1}\right)
\end{gather*}
$$

where y_{1} satisfies the equation

$$
\begin{equation*}
I_{11}\left(y, A^{+}\right)=\frac{\alpha_{11}}{2} \tag{8}
\end{equation*}
$$

It should be noted that for any y in $\left[A^{-}, A^{+}\right]$the relation

$$
\sigma\left(A^{-}, y\right) \cup \sigma\left(y, A^{+}\right)=[0, T]
$$

is satisfied.

Taking into consideration the above mentioned properties of the functions $K_{1}(r)$ and $K(r)$, we find that $I_{11}\left(A^{-}, y\right)$ and $I_{11}\left(y, A^{+}\right)$are continuous and strictly monotonic functions of y. Since

$$
I_{11}\left(A^{-}, A\right)=0, \quad I_{11}\left(A^{+}, A^{+}\right)=0, \quad I_{11}\left(A^{-}, A^{+}\right)=n_{1}(T)+\alpha_{11}(T)
$$

each of the Equations (7) and (8) has a unique solution in (A^{-}, A^{+}).
The functions $u^{+}(r)$ and $u^{-}(r)$ belong to M.
In fact:

$$
\begin{align*}
& \int_{0}^{\mathrm{T}} K_{1}(\tau) u^{+}(\tau) d \tau=-I_{11}\left(A^{-}, y_{0}\right)+I_{11}\left(y_{0}, A^{+}\right)=I_{11}\left(A^{-}, y_{0}\right)+ \\
& +I_{11}\left(y_{0}, A^{+}\right)-2 I_{11}\left(A^{-}, y_{0}\right)=n_{1}+\alpha_{11}-\alpha_{11}=n_{1} \\
& \int_{0}^{T} K_{1}(\tau) u^{-}(\tau) d \tau=I_{11}\left(A^{-}, y_{1}\right)-I_{11}\left(y_{1}, A^{+}\right)=n_{1} \tag{9}
\end{align*}
$$

Let $u(r)$ be an arbitrary function belonging to M. On the set $\sigma\left(A^{-}, y_{0}\right)$ the function $K_{1}(r)\left(u^{+}(r)-u(r)\right)$ is non-positive, and on the set $\sigma\left(y_{0}, A^{+}\right)$it is non-negative.

Furthermore,

$$
\int_{0\left(A^{-}, y_{0}\right)} K_{1}\left(u^{+}-u\right) d \tau=-\int_{\left(u_{0}, A^{+}\right)} K_{1}\left(u^{+}-u\right) d \tau
$$

Therefore, applying the mean value theorem, we obtain

$$
\begin{gathered}
\int_{0}^{T} K_{2} u^{+} d \tau-\int_{0}^{T} K_{2} u d \tau=\int_{\sigma\left(A^{-}, v_{0}\right)} K K_{1}\left(u^{+}-u\right) d \tau+\int_{\sigma\left(\nu_{0}, A^{+}\right)} K K_{1}\left(u^{+}-u\right) d \tau= \\
=K\left(\tau^{*}\right) \int_{\sigma\left(A^{-}, y_{0}\right)} K_{1}\left(u^{+}-u\right) d \tau+K\left(\tau^{* *}\right) \int_{\sigma\left(u_{0}, A^{+}\right)} K_{1}\left(u^{+}-u\right) d \tau= \\
=\left(K\left(\tau^{* *}\right)-K\left(\tau^{*}\right)\right) \int_{\sigma\left(v_{0}, A^{+}\right)} K_{1}\left(u^{+}-u\right) d \tau \geq 0
\end{gathered}
$$

since $K\left(r^{* *}\right)>K\left(r^{*}\right)$.
In a simflar manner it can be proved that $u^{-}(r)$ has the form given above.

Let $n_{2}(T) \in\left[n^{-}, n^{+}\right]$. We shall designate by $z=\psi(y)$ a function defined by the relation

$$
\begin{equation*}
\varphi(y, z) \equiv I_{11}\left(A^{-}, z\right)-I_{11}(z, y)+I_{11}\left(y, A^{+}\right)=n_{1} \tag{10}
\end{equation*}
$$

It follows from (9) that $z=A^{-}$if $y=y_{0}$ and $z=y_{1}$ if $y=A^{+}$. The
function $\phi(y, z)$ is defined and continuous in the region $A^{-}<y<A^{+}$, $A^{-} \leqslant x \leqslant y$. For any y in $\left[y_{0}, A^{+}\right]$the function $\phi(y, x)$ is monotonically increasing in the sense from the value

$$
-I_{11}\left(A^{-}, y\right)+I_{11}\left(y, A^{+}\right)<n_{1}
$$

to the value

$$
I_{11}\left(A^{-}, y\right)+I_{11}\left(y, A^{+}\right)=n_{1}+\alpha_{11}
$$

as z varies from A^{-}to y.
For any z in $\left[A^{-}, A^{+}\right]$, the function $\phi(y, z)$ is monotonically decreasing in the strict sense as y varies from z to A^{+}.

It can be proved therefore that $z=\psi\left(y_{2}\right.$ is defined, continuons, and monotonically increasing in the strict sense from $z=A^{-}$to $z=y_{1}$ as y varies from y_{0} to A^{+}. It should also be remarked that $\psi(y)<y$ for $y \in\left[y_{0}, A^{+}\right]$:

In fact, $\psi\left(y_{0}\right)=A^{-}<y_{0}$, and if, as y increases, the equality $z^{*}=$. $\psi\left(y^{*}\right)=y^{*}$ is satisfied for some y^{*}, then

$$
\varphi\left(y^{*}, z^{*}\right)=\varphi\left(y^{*}, y^{*}\right)=n_{1}+\alpha_{11}
$$

which contradicts the definition $z=\psi(y)$. We now introduce the function

$$
\Phi(y)=\int_{0}^{T} K_{2}(\tau) u_{v}(\tau) d \tau
$$

Where

$$
\begin{gathered}
u_{y}(\tau)=m \operatorname{sign} K_{1}(\tau) \quad \text { if } \tau \in \sigma\left(A^{-}, \psi(y)\right) \cup \sigma\left(y, A^{+}\right) \\
u_{v}(\tau)=-m \operatorname{sign} K_{1}(\tau) \quad \text { if } \tau \in \sigma(\psi(y), y)
\end{gathered}
$$

it follows from (10) that for any $y \in\left[y_{0}, A^{+}\right]$the function $a_{y}(r)$ belonge to the set M.

The function $\Phi(y)$ is defined and continnous in the interval $\left[y_{0}, A^{+}\right]$ and varies fron the value n^{-}to the value n^{+}as y increases from y_{0} to A^{+}; consequently, the equation

$$
\begin{equation*}
\Phi(y)=n_{2}(T) \tag{11}
\end{equation*}
$$

has at least one root $y=a$ in the interval $\left[y_{0}, A^{+}\right]$, and therefore

$$
\int_{0}^{T} K_{2}(\tau) u_{a}(\tau) d \tau=n_{2}(T)
$$

that is, $u_{a}(r)$ coincides with $u_{T}(r)$.

BIBLIOGRAPHY

1. Fel'dbanm, A.A., Optimal'nje protsessy v sistemakh avtomaticheskogo negulirovaniia (Optimal processes in automatic control systems). Avtomatika i telemekhanika Vol. 14, No. 6, 1953.
2. Bellaan, R., Glicksberg, I. and Gross, 0 ., On the "bang-bang" control problem. Quarterly Applied Mathematics Vol. 14, No. 1, 1956.
3. Krasovskii, N.N., K teorii optimal' nogo regulirovaniia (A contribution to the theory of optimal control). Avtomatika i telemekhanika Vol. 18, No. 11, 1957.
4. Voltianskii, V.G., Gamkrelidze, R.V. and Pontriagin, L.S., Teoriia optimal'nykh protsessov. 1. Printsip maksimuma (Theory of Optimal Processes. 1. The Maximum Principle). Izv. Akad. nauk SSSR Vol. 24, No. 1, 1960.
5. Rozonoer, L. I., Printsip maksimuma \vee teorif optimal'nykh sistem (The maxinum principle in the theory of optimal systems). Avtomatika i telemekhanika Vol. 20, No. 11, 1959.
